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Abstract. We develop a recursive method for perturbative solutions of the Fokker-Planck equation with
nonlinear drift. The series expansion of the time-dependent probability density in terms of powers of the
coupling constant is obtained by solving a set of first-order linear ordinary differential equations. Resum-
ming the series in the spirit of variational perturbation theory we are able to determine the probability
density for all values of the coupling constant. Comparison with numerical results shows exponential con-
vergence with increasing order.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.10.Gg Stochastic analysis
methods (Fokker-Planck, Langevin, etc.)

1 Introduction

In many problems of physics, chemistry and biology one
has to deal with vast numbers of influences which are not
fully known and are thus modelled by noise or fluctua-
tions [1–4]. The stochastic approach to such systems iden-
tifies some relevant macroscopic property x governed by
a drift coefficient K(x), while the microscopic degrees are
averaged to noise, entering as a stochastic force. In the
case of additive noise this simply leads to a diffusion con-
stant D. Thus we arrive at the Fokker-Planck equation
(FP) [5] for the density P(x, t) of the probability to find
the system in a state with property x at time t:

∂

∂t
P(x, t) = − ∂

∂x
[K(x)P(x, t)] + D

∂2

∂x2
P(x, t) . (1)

Once P(x, t) is known from solving (1), we can calculate
the ensemble average of any function O(x) according to

〈O(x(t))〉 =
∫ +∞

−∞
O(x(t))P(x, t) dx . (2)

In this paper we consider a stochastic model with the non-
linear drift coefficient

K(x) = −γ x − gx3 . (3)
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Such models are studied, for instance, in semiclassical
treatments of a laser near to its instability threshold [5,6],
where the variable x is taken to be the electric field. The
damping constant γ is set proportional to the difference
between the pump parameter σ and its threshold value
σthr, so that the laser instability corresponds to γ = 0.
The coupling constant g ≥ 0 describes the interaction be-
tween light and matter within the dipole approximation,
and the diffusion constant D in the FP equation charac-
terizes the spontaneous emission of radiation. While the
linear case with g = 0, corresponding to Brownian motion
with damping constant γ, can be solved analytically, there
is no exact solution for the nonlinear case with g > 0. But
we can find a solution in form of a series expansion of
the probability density P(x, t) in powers of the coupling
constant g. This series is asymptotic, i.e. its expansion co-
efficients increase factorially with the perturbative order
and alternate in sign.

Such divergent weak-coupling series are known from
various fields of physics, e.g. quantum statistics or crit-
ical phenomena, and resummation techniques have been
invented to extract meaningful information in such sit-
uations. Powerful tools among them are the variational
methods, independently studied by many groups. (see e.g.
the references in [7]). A simple example is the so-called
δ-expansion of the anharmonic quantum oscillator, where
the trial frequency of an artificial harmonic oscillator, in-
troduced to maximally counterbalance the nonlinear term,
is optimized following the principle of minimal sensitiv-
ity [8]. It turns out that the δ-expansion procedure corre-
sponds to a systematic extension of a variational approach
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in quantum statistics [9–12] to arbitrary orders as devel-
oped by Kleinert [13–15], now being called variational per-
turbation theory (VPT). In recent years, VPT has been
extended in a simple but essential way to also allow for the
resummation of divergent perturbation expansions which
arise from renormalizing the φ4-theory of critical phenom-
ena [14,16–18]. The most important new feature of this
field-theoretic variational perturbation theory is that it
accounts for the anomalous power approach to the strong-
coupling limit which the δ-expansion cannot do. This ap-
proach is governed by an irrational critical exponent as
was first shown by Wegner [19] in the context of criti-
cal phenomena. In contrast to the δ-expansion, the field-
theoretic variational perturbation expansions cannot be
derived from adding and subtracting a harmonic term.
Instead, a self-consistent procedure is set up to determine
this irrational critical Wegner exponent. The theoretical
results of the field-theoretic variational perturbation the-
ory are in excellent agreement with the only experimental
value available so far with appropriate accuracy, the criti-
cal exponent α governing the behaviour of the specific heat
near the superfluid phase transition of 4He which was mea-
sured in a satellite orbiting around the earth [14,18,20,21].

Recently, the VPT techniques have been applied to
Markov theory, approximating a nonlinear stochastic pro-
cess by an effective Brownian motion [22,23]. This is
achieved by adding and subtracting a linear term to the
nonlinear drift coefficient (3), where the new damping con-
stant is taken as the variational parameter. In the present
paper we extend this result to higher orders, which we
have made accessible by our recursive approach [24]. By
doing so, we are able to show that VPT makes Markov the-
ory converge exponentially with respect to order, a phe-
nomenon known for various other systems [25–31].

The paper is structured as follows. In Section 2 we
review some properties of the FP equation which are es-
sential for our discussion. In Section 3 we present the
asymptotic perturbation expansion for the normalization
constant of the stationary solution of the FP equation
with the drift coefficient (3) and its variational resumma-
tion. This simple case already illustrates in an introduc-
tory fashion all features of the upcoming treatment of the
time-dependent problem. In Section 4 we perturbatively
solve the FP equation with a nonlinear drift coefficient (3)
for Gaussian initial distributions by means of a double ex-
pansion with respect to the coupling strength g and the
variable x. In Section 5 we apply VPT to the resulting
divergent weak-coupling expansion of the probability den-
sity to render the results convergent for all values of the
coupling constant g. Furthermore, we discuss the exponen-
tial convergence of our variational method with respect to
the order. The paper closes with a summary in Section 6.

2 Fokker-Planck equation

In this section we fix our notation by reviewing the
main properties of one-dimensional stochastic Markov
processes.

2.1 Definitions

A stochastic Markov process x(t) is described by an or-
dinary stochastic differential equation which is of the
Langevin form

ẋ(t) = a(x(t)) + b(x(t))Γ (t), (4)

where Γ (t) is a Gaussian distributed stochastic force with
zero mean and δ-correlation:

〈Γ (t)〉 = 0, 〈Γ (t)Γ (t′)〉 = 2δ(t − t′). (5)

For the special case of the coefficient b(x) ≡ b being con-
stant, the stochastic system is said to be driven by addi-
tive noise, and the time evolution of its probability den-
sity P(x, t) is described by the Fokker-Planck equation (1)
with drift coefficient K(x) = a(x) and diffusion coefficient
D = b2 [5]. The FP equation (1) has the form of a conti-
nuity equation

∂

∂t
P(x, t) +

∂

∂x
S(x, t) = 0 (6)

with probability current

S(x, t) = K(x)P(x, t) − D
∂

∂x
P(x, t) . (7)

For natural boundary conditions, where S(x, t) → 0 as
x → ±∞, probability conservation is thus guaranteed:

∂

∂t

∫ +∞

−∞
dxP(x, t) = 0 . (8)

In the case of additive noise, the drift coefficient K(x) can
be derived from a potential

Φ(x) = − 1
D

∫ x

K(y) dy (9)

such that

K(x) = −D Φ′(x). (10)

If the potential satisfies Φ(x) → +∞ for x → ±∞, the
probability density P(x, t) approaches a stationary state
Pstat(x) in the long-time limit, i.e.

Pstat(x) = lim
t→∞P(x, t) = N e−Φ(x), (11)

where the normalization constant N is found to be

N =
{∫ +∞

−∞
exp

[
1
D

∫ x

K(y) dy

]
dx

}−1

. (12)

2.2 Brownian motion

For Brownian motion, defined by a linear drift coefficient

K(x) = −γ x (13)
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with damping γ > 0, we have a harmonic potential:

Φ(x) =
γ

2D
x2 (14)

and the FP equation (1) has a solution in closed form.
With initial condition

P(x, x0; 0) = δ(x − x0) (15)

the solution is

P(x, x′; t) =
√

γ

2πD(1 − e−2γ t)

× exp
[
− (x − x′e−γ t)2

2D(1 − e−2γ t)/γ

]
. (16)

It presents the Greens function of the FP equation with
the drift coefficient (13), describing the evolution of the
probability density starting with an arbitrary initial dis-
tribution according to

P(x, t) =
∫ +∞

−∞
P(x, x′; t − t′)P(x′, t′)dx′. (17)

For instance, the initial Gaussian probability density

P(x; t = 0) =
1√

2πσ2
exp

[
− (x − µ)2

2σ2

]
(18)

has the time evolution

Pγ(x, t) =
√

γ

2π[D − (D − γσ2)e−2γt]

× exp
[
−γ

2
(x − µ e−γt)2

D − (D − γσ2)e−2γt

]
. (19)

In the long-time limit it approaches the stationary distri-
bution

Pstat(x) = lim
t→∞Pγ(x, t) =

√
γ

2πD
exp

(
−γ x2

2D

)
(20)

which turns out to be independent of the parameters µ
and σ of the initial distribution (18).

2.3 Nonlinear drift

Consider now an additional nonlinear drift (3) so that the
potential (9) becomes

Φ(x) =
γ

2D
x2 +

g

4D
x4. (21)

While there exists no closed solution of the corresponding
FP equation (1)

∂

∂t
P(x, t) =

∂

∂x

[
(γx + gx3)P(x, t)

]
+ D

∂2

∂x2
P(x, t) ,

(22)

its stationary distribution (11) is given by

Pstat(x) = N(g) exp
(
− γ

2D
x2 − g

4D
x4

)
(23)

with normalization constant

N(g) =
[∫ +∞

−∞
exp

(
− γ

2D
x2 − g

4D
x4

)
dx

]−1

. (24)

Performing the integral in (24), we obtain

N(g) =




√
2g
γ exp

(
− γ2

8Dg

)/
K1/4

(
γ2

8Dg

)
; γ > 0 ,

(
4g
D

)1/4
/

Γ
(

1
4

)
; γ = 0 ,

2
π

√
g

|γ| exp

(
− γ2

8Dg

)
[
I−1/4

(
γ2

8Dg

)
+I1/4

(
γ2

8Dg

)] ; γ < 0 ,

(25)
where Iν(z) and Kν(z) denote modified Bessel functions
of ν-th order of first and second kind, respectively [32].

3 Normalization constant

The diverging behaviour of a perturbation series as well as
the method of VPT to overcome this problem can already
be studied by considering the normalization constant (24)
of the stationary solution (23). To simplify our discussion
we assume in this section without loss of generality D = 1.

3.1 Weak- and strong-coupling expansion

The weak-coupling expansion

N(N)
weak(g) =

N∑
n=0

an gn (26)

follows from (24) by expanding the exp(−gx4/4)-term in
the integrand:

N(N)
weak(g) =

[√
2

N∑
k=0

(−g)k

k!
Γ (1/2 + 2k)

γ1/2+2k

]−1

. (27)

On the other hand, a rescaling x → (4/g)1/4y in the nor-
malization integral (24) leads to

N(g) =
(g

4

)1/4
[∫ +∞

−∞
exp

(
− γ

g1/2
y2 − y4

)
dy

]−1

,

(28)
so the strong-coupling expansion

N(M)
strong(g) = g1/4

M∑
m=0

bm g−m/2 (29)
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Fig. 1. Weak- and strong-coupling expansions (26) and (29) up
to the 5th order, respectively, as well as the exact normalization
constant (24) (• • •) for D = γ = 1.

Table 1. The first 6 coefficients of the weak- and strong-
coupling expansion (26) and (29), respectively, for D = γ = 1.

n
√

2π an bn

0 1 0.390 062 251 089 407 = Γ (3/4)/π

1 3/4 0.131 836 797 004 050 253 244

2 −87/32 −0.004 198 378 378 722 963 623

3 2889/128 −0.001 419 006 213 792 844 574

4 −581157/2048 0.000 536 178 450 689 882 683

5 38668509/8192 −0.000 093 437 511 028 762 876

follows from (28) by expanding the term exp(−γy2/g1/2)
in the integrand

N(M)
strong(g) =

(g

4

)1/4
[

M∑
k=0

(−γ)k

gk/2

Γ (1/4 + k/2)
2k!

]−1

.

(30)
Note that the weak-coupling expansion (26) contains inte-
ger powers of g, whereas dimensional arguments lead to ra-
tional powers of g for the strong-coupling expansion (29).
The first six coefficients an, bm are given in Table 1 and the
respective expansions (26) and (29) are depicted in Fig-
ure 1. While the weak-coupling expansion provides good
results for small values of g, the strong-coupling expansion
describes the behavior for large values of g. For interme-
diate values of g both series yield poor results.

3.2 Variational perturbation theory

Despite its diverging nature, all information on the an-
alytic function N(g) is already contained in the weak-
coupling expansion (26). One way to extract this infor-
mation and use it to render the series convergent for any
value of the coupling constant g is provided by VPT as
developed by Kleinert [14,15,18]. This method is based
on introducing a dummy variational parameter on which
the full perturbation expansion does not depend, while the

truncated expansion does. The optimal variational param-
eter is then selected by invoking the principle of minimal
sensitivity [8], requiring the quantity of interest to be sta-
tionary with respect to the variational parameter. In our
context [22–24], this dummy variational parameter can be
thought of as the damping constant κ of a trial Brow-
nian motion with a harmonic potential κx2/2, which is
tuned in such a way, that it effectively compensates the
nonlinear potential. In order to introduce the variational
parameter κ, we add the harmonic potential κx2/2 of the
trial Brownian motion to the nonlinear potential (21) and
subtract it again:

Φ(x) =
κ

2
x2 +

g

4
x4 +

γ − κ

2
x2. (31)

By doing so, we consider the harmonic potential κx2/2
as the unperturbed term and treat all remaining poten-
tial terms in (31) as a perturbation. Such a formal per-
turbation expansion is performed for the normalization
constant (24) according to

N(g) =

{ ∞∑
n=0

δn

n!
∂n

∂δn

∫ +∞

−∞
exp

[
− κ

2
x2

−δ

(
g

4
x4 +

γ − κ

2
x2

)]
dx

}−1
∣∣∣∣∣∣
δ=1

, (32)

where the additional parameter δ is introduced in the
spirit of the δ-expansion (see, for instance, the references
in [7]). Due to the rescaling x → x̃/β(δ) with the scaling
factor

β(δ) =
√

[κ + δ(γ − κ)]/γ, (33)

the weak-coupling expansion (26) of (24) leads to:

N(g) = β(δ)
∞∑

n=0

an

[
δg

β4(δ)

]n
∣∣∣∣∣
δ=1

. (34)

Expanding and truncating the series at order N in δ, we
obtain the Nth variational approximation to the normal-
ization constant N(g):

N(N)
VPT(g, κ) =

N∑
n=0

an

(
κ

γ

)1/2−2n

gn

×
N−n∑
k=0

(
1/2 − 2n

k

)(
γ − κ

κ

)k

. (35)

Equivalently, the variational expression (35) also follows
directly from the weak-coupling expansion (26). To this
end we remark that, due to dimensional arguments, the
respective coefficients depend via

an = ãn γ1/2−2n (36)

on γ where ãn denote dimensionless quantities. Treating
in (31) the harmonic potential κx2/2 as the unperturbed
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term and all remaining potential terms as a perturbation,
corresponds then to the substitution

γ → κ(1 + gr) (37)

with the abbreviation

r =
γ − κ

κg
. (38)

Thus inserting (37) in the weak-coupling expan-
sion (26), (36), a reexpansion in powers of g up to order N
together with the resubstitution (38) leads to a rederiva-
tion of (35).

As the normalization constant N(g) does not depend
on the variational parameter κ, it is reasonable to ask
for the truncated series (35) to depend on κ as little as
possible. Therefore, we invoke the principle of minimal
sensitivity [8] and demand

∂

∂κ
N(N)

VPT(g, κ)
∣∣∣∣
κ=κ

(N)
opt (g)

= 0 . (39)

The optimal variational parameter κ
(N)
opt (g) leads to the

Nth order variational approximation N(N)
VPT(g, κ

(N)
opt (g)) to

the normalization constant N(g). In case that (39) is not
solvable, we determine κ

(N)
opt (g) from the zero of the sec-

ond derivative in accordance with the principle of minimal
sensitivity [8]:

∂2

∂κ2
N(N)

VPT(g, κ)
∣∣∣∣
κ=κ

(N)
opt (g)

= 0 . (40)

If it happens that (39) or (40) have more than one solu-
tion, we select that particular one which is closest to the
solution in the previous variational order.

As an illustrative example we treat explicitly the first
variational order where we obtain

N(1)
VPT(g, κ) =

2κ(κ + γ) + 3g

4
√

2πκ3
, (41)

so that the first derivative with respect to κ

∂

∂κ
N(1)

vpt(g, κ) =
2κ(κ− γ) − 9g

8
√

2πκ5
(42)

has the two zeros

κ
(1,±)
opt (g) =

1
2

(
γ ±

√
18g + γ2

)
. (43)

Since the variational parameter has to approach γ for
a vanishing coupling constant g, we select from (43)
the solution κ

(1,+)
opt (g). The resulting optimized result

N(1)
VPT(g, κ

(1,+)
opt (g)) is shown in Figure 2. We observe that

in this parameter range already the first-order varia-
tional approximation N(1)

VPT(g, κ
(1,+)
opt (g)) is indistinguish-

able from the exact normalization constant N(g).

Fig. 2. First-oder variational result (—) compared with exact
normalization constant (◦ ◦ ◦). First-order weak- and strong-
coupling approximations are shown by dashed (– –) and dotted
(···) lines, respectively.

3.3 Exponential convergence

In order to quantify the accuracy of the variational ap-
proximations, we study now, in particular, the strong-
coupling regime g → ∞. In first order, the insertion of (43)
in (41) leads to the strong-coupling expansion (29) with
the leading coefficient

b
(1)
0 =

(
2

9π2

)1/4

≈ 0.387. (44)

Comparing (44) with b0 = Γ (3/4)/π ≈ 0.390 (see Tab. 1),
we conclude that first-order variational perturbation the-
ory yields the leading strong-coupling coefficient within an
accuracy of less than 1%.

To obtain higher-order variational results for this
strong-coupling coefficient b0, we proceed as follows. From
the first-order approximation (43) we see that the
variational parameter has a strong-coupling expansion
κ

(1,+)
opt (g) =

√
g 3

√
2/2 + . . ., whose form turns out to

be valid also for the orders N > 1. Inserting the ansatz
κ

(N)
opt (g) = κ

(N)
0

√
g + . . . in (35), we obtain the Nth or-

der approximation for the leading strong-coupling coeffi-
cient b0:

b
(N)
0 (κ(N)

0 ) =
N∑

n=0

an

(
κ

(N)
0

γ

)1/2−2n

×
N−n∑
k=0

(
1/2 − 2n

k

)
(−1)k. (45)

The inner sum can be performed explicitly by using equa-
tion (0.151.4) in reference [32]:

b
(N)
0 (κ(N)

0 ) =
N∑

n=0

(−1)N−n

(−1/2 − 2n
N − n

)
an

(
κ

(N)
0

γ

)1/2−2n

. (46)
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Fig. 3. The points show the logarithmic plot of the relative er-

ror |b(N)
0 (κ

(N)
0 )−b0|/b0 when using the smallest zero of the first

(•) and the second derivative (◦), respectively, against N1/2.
The solid line represents a fit to the straight line −α− βN1/2.

In order to optimize (46) we look again for an extremum

∂b
(N)
0 (κ(N)

0 )

∂κ
(N)
0

= 0 (47)

or for a saddle point

∂2b
(N)
0 (κ(N)

0 )

∂κ
(N)
0

2
= 0 . (48)

It turns out that extrema exist for odd orders N , whereas
even orders N lead to saddle points. The points of Fig-
ure 3 show the logarithmic plot of the relative error
|b(N)

0 (κ(N)
0 ) − b0|/b0 when using the smallest zero of the

first and second derivative, i.e. (47) and (48), respectively.
We observe that the relative error depends linearily on
N1/2 up to the order N = 120 according to

|b(N)
0 (κ(N)

0 ) − b0|
b0

= e−α−β N1/2
, (49)

where the fit to the straight line −α− βN1/2 leads to the
quantities α = 0.139714 and β = 1.33218. Thus we have
demonstrated that the variational approximations for the
leading strong-coupling coefficient converge exponentially
fast. Note that the speed of convergence is faster than the
exponential convergence of the variational results for the
ground-state energy of the anharmonic oscillator [25,26].

4 Recursion relations

Now we elaborate the perturbative solution of the FP
equation (22) with the initial distribution (18). By doing
so, we follow the notion of reference [30] and generalize the
recursive Bender-Wu solution method for the Schrödinger
equation of the anharmonic oscillator [33], thus obtain-
ing a recursive set of first-order ordinary differential equa-
tions [24].

4.1 Time transformation

At first we perform a suitable time transformation which
simplifies the following calculations:

τ(t) = τ0e
−γt , τ0 =

√
1 − γσ2/D. (50)

Thus the new time τ runs from τ0 to 0 when the physical
time t evolves from 0 to ∞. Due to (50) the FP equa-
tion (22) is transformed to

−γτ
∂

∂τ
P(x, τ) =

∂

∂x

[
(γx + gx3)P(x, τ)

]
+D

∂2

∂x2
P(x, τ) .

(51)
Furthermore, the initial distribution (18) reads then

P(x, τ = τ0) =
1√

2πσ2
exp

[
− (x − µ)2

2σ2

]
(52)

and contains P (x, τ = 1) = δ(x − µ) as a special case in
the limit σ2 → 0.

4.2 Expansion in powers of g

If the coupling constant g vanishes, the solution of the
initial value problem (51), (52) follows from applying the
time transformation (50) to (19), i.e.

Pγ(x, τ) =
√

γ

2πD(1 − τ2)
exp

[
− γ

2D

(x − x0τ)2

1 − τ2

]
, (53)

where we have introduced the abbreviation

x0 =
µ√

1 − γσ2/D
. (54)

For a coupling constant g > 0, we solve (51) by the ansatz

P(x, τ) = Pγ(x, τ) q(x, τ), (55)

so that the remainder q(x, τ) fulfills the partial differential
equation

− γτ
∂

∂τ
q(x, τ) =

[
3gx2 +

γgx4 − γgτx0x
3

D(τ2 − 1)

]
q(x, τ)

+
[
γ(τ2 + 1)x − 2γτx0

τ2 − 1
+ gx3

]
∂

∂x
q(x, τ) + D

∂2

∂x2
q(x, τ).

(56)

Then we solve (56) by expanding q(x, τ) in a Taylor series
with respect to the coupling constant g, i.e.

q(x, τ) =
∞∑

n=0

gn qn(x, τ) , (57)

where we set q0(x, τ) = 1. Thus the expansion coefficients
qn(x, τ) obey the partial differential equations

−γ τ
∂

∂τ
qn(x, τ) =

[
3x2+

γx4 − γ τx0x
3

D(τ2 − 1)
+

∂

∂x

]
qn−1(x, τ)

+
γ(τ2 + 2)x − 2γ τx0

τ2 − 1
∂

∂x
qn(x, τ) + D

∂2

∂x2
qn(x, τ).

(58)
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Fig. 4. Recursive calculation of the functions αn,k(τ ):
α0,0(τ ) = 1 is the only coefficient which is a priori nonzero ( ).
For each n the coefficients are successively determined for
k = 4n, . . . , 0 ( ). Each step necessitates ( ) only those co-
efficients which are already known ( ).

4.3 Expansion in powers of x

It turns out that the partial differential equations (58) are
solved by expansion coefficients qn(x, τ) which are finite
polynomials in x:

qn(x, τ) =
Mn∑
k=0

αn,k(τ)xk . (59)

Indeed, inserting the decomposition (59) in (58), we de-
duce that the highest polynomial degree is given by Mn =
4n. Note that in case of µ = 0 the partial differential equa-
tions (58) are symmetric with respect to x → −x, so that
only even powers of x appear in (59). From (58) and (59)
follows that the functions αn,k(τ) are determined from

∂

∂τ
αn,k(τ) +

k(τ2 + 1)
τ(τ2 − 1)

αn,k(τ) = rn,k(τ) , (60)

where the inhomogeneity is given by

rn,k(τ) = −k + 1
γ τ

αn−1,k−2(τ)−D(k + 2)(k + 1)
γ τ

αn,k+2(τ)

+
x0αn−1,k−3(τ)

D(τ2 − 1)
− αn−1,k−4(τ)

D(τ3 − τ)
+

2x0(k + 1)
τ2 − 1

αn,k+1(τ).

(61)

4.4 Recursive solution

The equations (60) and (61) represent a system of first-
order ordinary differential equations which can be recur-
sively solved according to Figure 4. By doing so, one has
to take into account αn,k(τ) = 0 if n < 0 or k < 0 or
k > 4n. The respective positions in the (n, k)-grid of Fig-
ure 4 are empty or lie outside. Iteratively calculating the
coefficients αn,k(τ) in the nth order, we have to start with
k = 4n and decrease k up to k = 0. In each iterative step
the inhomogeneity (61) of (60) contains only those coeffi-
cients which are already known. The only coefficient which
is a priori nonzero is α0,0(τ) = 1.

Applying the method of varying constants, the in-
homogeneous differential equation (60) is solved by the
ansatz

αn,k(τ) = An,k(τ)
τk

(τ2 − 1)k
, (62)

where An,k(τ) turns out to be

An,k(τ) = An,k(τ0) +
∫ τ

τ0

rn,k(σ)σ−k(σ2 − 1)k dσ . (63)

The integration constant An,k(τ0) is fixed by considering
the initial distribution (52). From (53), (55), (57), and (59)
follows

1 = 1 +
∞∑

n=1

gn
4n∑

k=0

αn,k(τ0)xk , (64)

so we conclude αn,k(τ0) = 0 and thus An,k(τ0) = 0 for
n ≥ 1. Therefore, we obtain the final result

αn,k(τ) =
τk

(τ2 − 1)k

∫ τ

τ0

rn,k(σ)σ−k(σ2 − 1)k dσ , (65)

where rn,k(σ) is given by (61).
Note that the special case σ2 → 0 with the initial dis-

tribution P (x, τ = 1) = δ(x − µ) has to be discussed sep-
arately, as then (64) is not valid. In this case we still con-
clude for k 	= 0 that An,k(τ0 = 1) = 0, otherwise αn,k(τ)
in (62) would posses for τ = 1 a pole of order k. For k = 0
this argument is not valid as the fraction in (62) is then
no longer present. The integration constant An,0(τ0 = 1)
follows from considering the normalization integral of (55)
for τ = 1 together with (57), and (59), i.e.

1 = 1 +
∞∑

n=1

gn
4n∑

k=0

αn,k(τ = 1)xk
0 . (66)

Indeed, taking into account (62) for k = 0 leads to

An,0(τ = 1) = αn,0(τ = 1) = −
4n∑

k=1

αn,k(τ = 1)xk
0 . (67)

Thus for k 	= 0 the coefficients αn,k(τ) are still given
by (65), whereas for k = 0 we obtain

αn,0(τ) =
∫ τ

1

rn,0(σ) dσ −
4n∑

k=1

αn,k(τ = 1)xk
0 . (68)

4.5 Cumulant expansion

The weak-coupling expansion (55), (57) of the probability
density P(x, τ) has the disadvantage that its truncation to
a certain order N could lead to negative values. To avoid
this, we rewrite the weak-coupling expansion (55), (57) in
form of the cumulant

P(x, τ) = ep(x,t), (69)
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where the exponent p(x, τ) is expanded in powers of the
coupling constant g:

p(x, τ) = lnPγ(x, τ) +
∞∑

n=1

gn pn(x, τ). (70)

The respective coefficients pn(x, τ) follow from reexpand-
ing the weak-coupling expansion (55), (57) according
to (69), (70). However, it is also possible to derive a recur-
sive set of ordinary differential equations whose solution
directly leads to the cumulant expansion (69), (70). To this
end we proceed in a similar way as in case of the derivation
of the weak-coupling expansion and perform the ansatz

pn(x, τ) =
2n+2∑
k=0

2n+2−k∑
l=0

βn,k,l(τ)xkxl
0. (71)

The respective expansion coefficients βn,k,l(τ) follow from
a formula similar to (65), i.e.

βn,k,l(τ) =
τk

(τ2 − 1)k

∫ τ

τ0

sn,k,l(σ)σ−k(σ2 − 1)k dσ , (72)

where the functions sn,k,l(σ) are given for n = 1 by

s1,k,l(τ) = − 3
γτ

δk,2δl,0 +
δk,3δl,1

D(τ2 − 1)
− δk,4δl,0

D(τ3 − τ)

+
2(k + 1)
τ2 − 1

β1,k+1,l−1(τ) − D(k + 2)(k + 1)
τγ

β1,k+2,l(τ) ,

(73)

and for n ≥ 2 by

sn,k,l(τ) = −k − 2
γτ

βn−1,k−2,l(τ) +
2(k + 1)
τ2 − 1

βn,k+1,l−1(τ)

−D(k + 2)(k + 1)
γτ

βn,k+2,l(τ) − D

γτ

n−1∑
m=1

k+1∑
j=1

j(k − j + 2)

×
l∑

i=0

βm,j,i(τ)βn−m,k−j+2,l−i(τ) . (74)

Iterating (72–74) one has to take into account that
βn,k,l(τ) vanishes if one of the following conditions is ful-
filled: n ≤ 0; k < 0 or k > 2n + 2; l < 0 or l > 2n + 2− k;
k + l odd. By inverting the time transformation (50), the
expansion coefficients are finally determined as functions
of the physical time t. For the first order n = 1 one finds
the expansion coefficients β1,k,l(t) given in Table 2.

They are plotted for γ > 0 in Figure 5 where we dis-
tinguish three time regimes from their qualitative behav-
ior. In the limit t → 0 all expansion coefficients β1,k,l(t)
vanish as already the probability density of the Brown-
ian motion (19) in (69)–(71) leads to the correct initial
distribution (18). In the opposite limit t → ∞ the only
nonvanishing expansion coefficients β1,k,l(t) read

γ > 0 : lim
t→∞β1,0,0(t) =

3D

4γ2
, lim

t→∞β1,4,0(t) = − 1
4D

,

(75)

Fig. 5. Time evolution of the expansion coefficients β1,k,l(t)
from Table 2 for D = 1, γ = 1, µ = 0 and σ = 0.5.

so that (69)–(71) reproduces the correct stationary solu-
tion (23), (26) up to first order in g. For intermediate
times t we observe that all expansion coefficients β1,k,l(t)
show a nontrivial time dependence. Note that the number
of coefficients βn,k,l(t) which have to be calculated in the
nth order is given by

∑n+1
k=0(2k +1) = (n+2)2, thus it in-

creases quadratically. The expansion coefficients βn,k,l(t)
up the 7th order can be found in reference [34].

5 Variational perturbation theory

In this section we follow references [22,24] and perform
a variational resummation of the cumulant expansion in
close analogy to Section 3.2. By doing so, we variationally
calculate the probability density P(x, t) for an arbitrarily
large coupling constant g with γ > 0 (anharmonic oscil-
lator) and γ < 0 (double well). In both cases, we obtain
probability densities, which originally peaked at the ori-
gin, turn into their respective stationary solutions in the
long-time limit.

5.1 Resummation procedure

We aim at approximating the nonlinear drift coefficient (3)
by the linear one −κx of a trial Brownian motion with a
damping coefficient κ which we regard as our variational
parameter. To this end we add −κx to the nonlinear drift
coefficient (3) and subtract it again:

K(x) = −κx − gx3 − (γ − κ)x . (76)

By doing so, we consider the linear term −κx as the un-
perturbed system and treat all remaining terms in (76) as
a perturbation. Such a formal perturbation expansion is
performed by introducing an artificial parameter δ which
is later on fixed by the condition δ = 1:

K(x) = −κx − δ
[
gx3 + (γ − κ)x

]
. (77)

Performing the rescaling

x → x̃

β(δ)
, t → t̃

β2(δ)
, g → β4(δ)g̃

δ
(78)
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(a) (b) (c)

Fig. 6. Time evolution of probability density from variational optimization for g = D = 1, γ = σ = 0.1, and µ = 0.
(a) Largest variational parameter κ determined from (81), colors code different times corresponding to the distributions shown
in (b). (b) Dots correspond to variational parameters of (a) and coincide on this scale with numerical solutions of FP equation as
represented by the lines through the dots. Cumulant expansions are shown as gray areas. At the front the stationary distribution
Pstat(x) and the corresponding potential Φ(x) are depicted. (c) Distance (84) between variational and cumulant expansion from
numerical solution of FP equation.

with the scaling factor (33), the FP equation (1) with
the drift coefficient (77) is transformed to the original
one (22). Due to dimensional reasons also the parame-
ter µ, σ of the initial distribution (52) have to be rescaled
according to

µ → µ̃

β(δ)
, σ → σ̃

β(δ)
. (79)

The rescaling (78), (79) is applied to the cumulant expan-
sion (69), (70). After expanding in powers of δ and trun-
cating at order N , we finally set δ = 1 and obtain some
Nth order approximant p(N)(x, t; κ) for the cumulant.

Equivalently, the same result follows also from the
weak-coupling expansion of the cumulant (69), (70):

p(N)(x, t) = lnPγ(x, t) +
N∑

n=1

pn(x, t)gn. (80)

Treating in (76) the linear drift coefficient −κx as the un-
perturbed term and all remaining terms as a perturbation
corresponds then to the substitution (37) with the abbre-
viation (38). Thus inserting (37) in (80), a reexpansion in
powers of g up to the order N together with the resubsti-
tution (38) leads also to p(N)(x, t; κ) [22].

If we could have performed this procedure up to
infinite order, the variational parameter κ would have
dropped out of the expression, as the original stochastic
model (3) does not depend on κ. However, as our calcu-
lation is limited to a finite order N , we obtain an artifi-
cial dependence on κ, i.e. some Nth order approximant
p(N)(x, t; κ), which has to be minimized according to the
principle of minimal sensitivity [8]. Thus we search for lo-
cal extrema of p(N)(x, t; κ) with respect to κ, i.e. from the
condition

∂p(N)(x, t; κ)
∂κ

∣∣∣∣
κ=κ

(N)
opt (x,t)

= 0 . (81)

It may happen that this equation is not solvable within a
certain region of the parameters x, t. In this case we look

for zeros of higher derivatives instead in accordance with
the principle of minimal sensitivity [8], i.e. we determine
the variational parameter κ from solving

∂mp(N)(x, t; κ)
∂κm

∣∣∣∣
κ=κ

(N)
opt,m(x,t)

= 0 . (82)

The solution κ
(N)
opt (x, t) from (81) or (82) yields the varia-

tional result

P (x, t) ≈
exp

[
p(N)

(
x, t; κ(N)

opt (x, t)
)]

∫ +∞

−∞
exp

[
p(N)

(
x′, t; κ(N)

opt (x′, t)
)]

dx′
(83)

for the probability density. Note that variational pertur-
bation theory does not preserve the normalization of the
probability density. Although the perturbative result is
still normalized in the usual sense to the respective per-
turbative order in the coupling constant g, this normal-
ization is spoilt by choosing an x-dependent damping con-
stant κ

(N)
opt (x, t). Thus we have to normalize the variational

probability density according to (83) at the end [22] (com-
pare the similar situation for the variational ground-state
wave function in Refs. [35,36]).

5.2 Anharmonic oscillator (γ > 0)

The variational procedure described in the last section
is now applied for determining the time evolution of the
probability density in case of the nonlinear drift coeffi-
cient (3) with γ > 0. By doing so, the optimization of the
variational parameter κ is performed for each value of the
variable x at each time t. The result of such a calculation
with the parameters g = D = 1, γ = σ = 0.1 and µ = 0
is shown in Figure 6 for the time interval 0 ≤ t ≤ 20. Fig-
ure 6a depicts the optimal variational parameter κ which
is the largest solution from (81). For small times, the op-
timal variational parameter reveals a x2-dependence. For
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(a) (b) (c)

Fig. 7. Time evolution of probability density from variational optimization for g = 10, D = 1, γ = −1, σ = 0.1 and µ = 0. (a)
Largest variational parameter κ determined from (81), colors code different times corresponding to the distributions shown in
(b). (b) Dots correspond to variational parameters of (a) and coincide on this scale with numerical solutions of FP equation as
represented by the lines through the dots. Cumulant expansions are shown as gray areas. At the front the stationary distribution
Pstat(x) and the corresponding potential Φ(x) are depicted. (c) Distance (84) between variational and cumulant expansion from
numerical solution of FP equation.

large values of t, the variational parameter becomes inde-
pendent of x which corresponds to the expectation that
the probability density converges towards the stationary
one. In Figure 6b the respective variational results for the
distribution are compared with the cumulant expansion.
The latter shows insofar a wrong behavior as it has two
maxima whereas the numerical solution has only one. The
variationally determined probability density is depicted by
dots which correspond to the optimal variational param-
eters in Figure 6a. We observe on this scale nearly no
deviation between the variational and the numerical dis-
tribution, thus already the first-order variational results
are quite satisfactory.

In order to quantify the quality of our approxima-
tion, we introduce the distance between two distributions
P(x, t) and P̃(x, t) at time t according to

∆P,P̃(t) =
1
2

∫ +∞

−∞

∣∣∣P(x, t) − P̃(x, t)
∣∣∣ dx. (84)

If both distributions are normalized and positive, the max-
imum value for the distance ∆P,P̃(t) is 1 and corresponds
to the case that the distributions have no overlap. How-
ever, if they coincide for all x, the distance ∆P,P̃(t) van-
ishes. Thus small values of ∆P,P̃(t) indicate that both
distributions are nearly identical. In Figure 6c we com-
pare the time evolution of the distance (84) between the
variational distribution and the cumulant expansion from
the numerical solution of the corresponding FP equation,
respectively. We observe that the variational optimization
leads for all times to better results than the cumulant ex-
pansion, both being indistinguishable for very small and
large times, as expected.

5.3 Double well (γ < 0)

Now we discuss the more complicated problem of a nonlin-
ear drift coefficient (3) with γ < 0. The corresponding po-
tential (21) has the form of a double well, i.e. it decreases
harmonically for small x and becomes positive again for

large x, so that a stationary solution exists (see the front
of Fig. 7b). Strictly speaking, the cumulant expansion de-
veloped in Section 4.5 makes no sense for γ < 0 as the
unperturbed system g = 0 does not have a normalizable
solution. This problem is reflected in the time evolution
of the cumulant expansion coefficients βn,k,l(t) which are
listed in Table 2 and depicted in Figure 8 for the order
n = 1. In contrast to the case γ > 0 in (75), the coefficient
β1,4,0(t) vanishes for γ < 0 so that the cumulant expan-
sion (69)–(71) does not even lead to the correct stationary
solution (23), (26) up to first order in g. In the limit t → ∞
the only nonvanishing expansion coefficients β1,k,l(t) read

γ > 0 : lim
t→∞β1,0,2(t) =

3D2(D − 2γσ2)
2γ(D − γσ2)

,

lim
t→∞β1,2,0(t) =

3
2γ

,

lim
t→∞β1,0,4(t) =

D3

4(D − γσ2)4
. (85)

The results of the first-order variational calculation of the
probability density are summarized in Figure 7 for the pa-
rameters g = 10, D = 1, γ = −1, σ = 0.1, and µ = 0. Due
to the strong nonlinearity, we could determine the optimal
variational parameter κ from solving (81) for all x and t as
shown in Figure 7a. As expected the cumulant expansion
diverges for larger times t as illustrated in Figure 7b. De-
spite of this the variational distribution lies precisely on
top of the numerical solutions of the FP equation. This im-
pressive result is also documented in Figure 7c where the
cumulant expansion shows for increasing time t no overlap
with the numerical solution, whereas the distance between
the variational and the numerical distribution decreases.

Even more difficult is the case of a weak nonlinearity
where the two minima of the double well are more pro-
nounced. Therefore, the variational calculation has also
been performed for the parameter values g = 0.1, D = 1,
γ = −1, σ = 0.1, and µ = 0. For small times one
obtains again a continuous optimal variational parame-
ter κ

(1)
opt(x, t) from solving (81) for all x. However, there
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Fig. 8. Time evolution of the expansion coefficients β1,k,l(t)
from Table 2 for D = 1, γ = −1, µ = 0, and σ = 0.5.

Fig. 9. Zeros of ∂p(1)(x, t; κ)/∂κ with continuous solutions for
t < tcrit = 1.618 and disconnected branches beyond.

exists a critical time tcrit ≈ 1.6 beyond which condi-
tion (81) has different solution branches depending on x.
In general such a critical point exists, if the equations:




 1

∂/∂κ
∂/∂x


 ∂p(N)(x, t; κ)

∂κ



{x=xcrit,t=tcrit,κ=κ

(N)
crit }

=


0

0
0




(86)
have a solution {xcrit, tcrit, κcrit}. For the case at hand we
find xcrit = ±2.267, tcrit = 1.618 and κcrit = −1.326. The
corresponding surface of zeros and the critical points are
depicted in Figure 9.
As it remains unclear how these branches should be com-
bined for evaluating the probability density, we resort to
zeros of higher derivatives (82) that are continuous for all
times. For small values of t we find one, two and three
continuous zeros for the first, second and third derivative,
respectively, as shown in Figure 10 for t = 1.2. The small-
est zero of the second and third derivative reach a critical
point at tcrit = 1.5284 and tcrit = 1.4588. The larger zeros

Fig. 10. Zeros of (82) for m = {1, 2, 3} at t = 1.2, before
reaching any critical time.

Fig. 11. Zeros of (82) for m = {1, 2, 3} at t = 1.7. The smallest
branch of zeros for each derivative has reached a critical point
and dissected in disconnected branches.

have continuous solutions for all values of t, as shown in
Figure 11 for t = 1.7.

Figure 12 shows the distance between variational and
cumulant expansion from numerical solution of FP equa-
tion for these different branches of zeros. Apparently there
is no easy choice of the right branch of zeros, which gives
good results at all times. While κopt,3b gives good results
at small times, it fails to approach the stationary solu-
tion. The largest zero κopt,3c of the third derivative on the
other hand is unusable for small t, but gives good results
for later times.

Assuming we had no knowledge of the numerical solu-
tion, we need to find a way to switch the solution branch
from κopt,3b to κopt,3c. In order to determine a suitable
time to change the branch of zeros from κopt(x, t) to
κ′

opt(x, t), we consider the deviation of the moments of
the corresponding distributions

∆n
κopt,κ′

opt
(t) =

∫ +∞
−∞

∣∣xn
[
P (x, t; κopt) − P (x, t; κ′

opt)
]∣∣ dx∫ +∞

−∞ |xnPstat(x, t)| dx
.

(87)
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Table 2. First order cumulant expansion coefficients β1,k,l(t).

β1,0,0(t) = 3D(D2(−5+e4tγ−4tγ+e2tγ (4−8tγ))+8Dγ(1+tγ+e2tγ (−1+tγ))σ2−2γ2(1−e2tγ +2tγ)σ4)

4γ2(D(−1+e2tγ )+γσ2)2

β1,0,2(t) = 3D2(D(1+e4tγ (−5+4tγ)+e2tγ (4+8tγ))−2γ(1−e4tγ +4e2tγ tγ)σ2)

2γ(D(−1+e2tγ )+γσ2)3

β1,0,4(t) = D3(1−6e2tγ +2e6tγ+e4tγ(3−12tγ))

4(D(−1+e2tγ )+γσ2)4

β1,1,1(t) = −3Detγ (2D2(4+3tγ+e4tγ (−2+tγ)+e2tγ (−2+8tγ))−Dγ(13−e4tγ +12tγ+4e2tγ (−3+4tγ))σ2+3γ2(1−e2tγ+2tγ)σ4)

2γ(D(−1+e2tγ )+γσ2)3

β1,1,3(t) = −(D2etγ (D(−1+e6tγ+e4tγ (9−12tγ)−3e2tγ (3+4tγ))+3γ(1−e4tγ +4e2tγ tγ)σ2))

2(D(−1+e2tγ )+γσ2)4

β1,2,0(t) = 3(D3(1+e4tγ (−5+4tγ)+e2tγ (4+8tγ))−D2γ(3+e4tγ (−7+4tγ)+4e2tγ (1+4tγ))σ2+Dγ2(3−e4tγ+e2tγ (−2+8tγ))σ4+(−1+e2tγ)γ3σ6)

2γ(D(−1+e2tγ )+γσ2)3

β1,2,2(t) = −3De2tγ (D2(3+2tγ+8e2tγ tγ+e4tγ (−3+2tγ))−Dγ(5−e4tγ +4tγ+e2tγ (−4+8tγ))σ2+γ2(1−e2tγ +2tγ)σ4)

2(D(−1+e2tγ)+γσ2)4

β1,3,1(t) = etγ (D3(1−e6tγ+3e4tγ (−3+4tγ)+3e2tγ (3+4tγ))−3D2γ(1+e4tγ (−5+4tγ)+e2tγ (4+8tγ))σ2+3Dγ2(1−e4tγ+4e2tγ tγ)σ4+(−1+e2tγ )γ3σ6)

2(D(−1+e2tγ )+γσ2)4

β1,4,0(t) = −(e2tγ (D3(2−6e4tγ +e6tγ+3e2tγ (1+4tγ))−6D2γ(1−e4tγ +4e2tγ tγ)σ2+6Dγ2(1+e2tγ (−1+2tγ))σ4+2(−1+e2tγ )γ3σ6))

4(D(−1+e2tγ )+γσ2)4

Fig. 12. Distance (84) between variational and cumulant ex-
pansion from numerical solution of FP equation for different
branches of zeros. The smallest zero of each derivative reaches
a critical time at t ≈ 1.6.

Fig. 13. Distance (87) between moments of distributions de-
termined from variationally from different branches of zeros of
the third derivative.

Figure 13 shows the distance (87) for the branches of
zeros κopt,3b(x, t) and κopt,3c(x, t) for the first three even
moments n = 2, 4, 6. We find, that the distributions are in
good agreement at t ≈ 2.6, so we choose to combine the
solution for κopt,3b(x, t) for t < 2.6 with the solution for
κopt,3c(x, t) for t > 2.6. The combined result is shown in
Figure 14. The distance (84) between variational expan-
sion and numerical solution of the FP equation for this
case exhibits a small kink at t ≈ 2.6 due to the change in
the branch of zeros. Furthermore, in comparison with the
other cases in Figures 6 and 7 this distance is relatively
large which underlines that this is, indeed, a difficult varia-
tional problem. Note, however, that the combined solution
succeeds in approaching the stationary solution for large
times.

We remark that the variational approach of refer-
ence [23] is related to ours. In contrast to our method, one
obtains there in case of the difficult double well problem
g = 0.1, κ = −1 a unique solution of the extremal condi-
tion (81) for all x and t. However, the resulting probability
density shows for larger times t significant deviations from
our, and from numerical solutions of the FP equation.

5.4 Higher orders

High-order variational calculations have been performed
for the double well with the parameters g = 10, D = 1,
γ = −1 in case of an initially Gaussian-distributed prob-
ability density peaked at the origin, i.e. σ = 0.1, µ = 0 for
t = 0.23. This time was chosen due to its large distance
between the variational result and the numerical solution
in order to reduce possible errors in the numerical solu-
tion. The order of magnitude of the systematic error of the
numerical solution can be estimated by comparing the nu-
merical solution of the harmonic problem, e.g. g = 0, with
the exact solution that is available for that case. We find
that the error of the numerical solution is about 10−6,
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(a) (b) (c)

Fig. 14. Time evolution of probability density from variational optimization for g = 0.1, D = 1, γ = −1, σ = 0.1, and µ = 0.
(a) Variational parameter κ determined from (82) for m = 3, colors code different times corresponding to the distributions
shown in (b). For t < 2.6 we selected the branch of zeros κopt,3b, whereas for t > 2.6 the branch κopt,3c was used. Outlined
dots are interpolated zeros (see text). (b) Dots correspond to variational parameters of (a) and coincide on this scale with
numerical solutions of FP equation as represented by the lines through the dots. Cumulant expansions are shown as gray areas.
At the front the stationary distribution Pstat(x) and the corresponding potential Φ(x) are depicted. (c) Distance (84) between
variational and cumulant expansion from numerical solution of FP equation.

which is smaller than the pointsize used in Figure 15. The
first three variational orders, shown in Figure 15, converge
exponentially to the numerical solution of the FP equa-
tion.

6 Summary

We have presented high-order variational calculations for
the probability density P(x, t) of a stochastic model with
additive noise which is characterized by the nonlinear drift
coefficient (3). A comparison with numerical results shows
an exponential convergence of our variational resumma-
tion method with respect to the order. We hope that VPT
will turn out to be useful also for other applications in
Markov theory as, for instance, the calculation of Kramer
rates [37] (see the recent variational calculation tunneling
amplitudes from weak-coupling expansions in Ref. [7]), the
treatment of stochastic resonance [38], or the investigation
of Brownian motors [39].

The authors thank Hagen Kleinert for fruitful discussions on
variational perturbation theory.
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